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Does Magnetic Charge Imply a Massive Photon? 
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In Abelian monopole theories the magnetic coupling is required to be enormous. 
Using the electric-magnetic duality of electromagnetism, it is argued that the 
existence of such a large, nonperturbative magnetic coupling should lead to a 
phase transition where magnetic charge is permanently confined and the photon 
becomes massive. The apparent masslessness of the photon could then be used 
as an argument against the existence of such a large, nonperturbative magnetic 
charge. Finally it is shown that even in the presence of this conjectured dynamical 
mass generation the Cabbibo-Ferrari (1962) formulation of magnetic charge 
gives a consistent theory. 

1. S T R O N G  C O U P L I N G  P H A S E  T R A N S I T I O N  

Normally the gauge bosons of a theory are said to be massless due to 
the requirement of  gauge invariance. If  the Lagrangian of a theory has a 
mass term for the gauge bosons (i.e., a term like ~m2A~A~), then the Lagran- 
gian is no longer invariant under the gauge transformation of the gauge field 
[i.e., A ,  ---> A~ - (1/e)a~A(x),  where A(x) is an arbitrary function]. One 
escape from this prohibition is the Higgs mechanism (Higgs, 1964a, b, 1966), 
which allows the gauge boson to have a mass while still remaining consistent 
with gauge invariance. This is accomplished by coupling the gauge boson 
to a scalar field which develops a vacuum expectation value. A less often 
stated restriction is that the coupling of the gauge boson to particles of  the 
theory needs to be small enough (Huang, 1982) so that the gauge boson does 
not become massive through some nonperturbative mechanism (e.g., the 
technicolor models for mass generation in the standard model). It is difficult 
to give a definite value for how small the coupling constant should be in 
order to ensure the masslessness of  the gauge boson, but requiring that it be 
small enough so that perturbation theory is valid seems a good rule of  thumb. 
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Wilson (1974) argued that in a U(1) gauge theory there should be some 
critical coupling ec below which the U(I) gauge boson is massless and the 
charges are free, and above which the gauge boson becomes massive and 
charges are confined. Wilson's conjecture does not determine whether this 
phase transition from massless gauge boson to massive gauge boson is a 
first- or second-order transition, nor does it give the value of the critical 
coupling at which this transition should occur. This conjectured mechanism, 
which dynamically generates a mass for the U(1) gauge boson, is similar to 
an effect which was found to occur in QED in 1 + 1 dimensions. Schwinger 
(1962a,b) rigorously showed that in I + 1 dimensions the photon would 
acquire a mass proportional to e 2, the square of the coupling. Thus in (1 + 
l)-dimensional QED ec = 0, and the photon always becomes massive. 
Schwinger also conjectured that the same effect could occur in 3 + 1 QED 
for some unspecified, large coupling. Guth (1980) showed that a U(1) gauge 
theory will indeed undergo a phase transition as conjectured by Wilson and 
Schwinger, but no theoretical value for the critical coupling constant was 
given. Thus for (3 + l)-dimensional QED it may be an "accident" of the 
gauge coupling e being small that results in the physical photon being massless 
within very stringent limits [the upper bound on the photon mass is 3.0 X 
10 -27 e V  = 5 .3  X 10 -63 kg > m.y (Particle Data Group, 1994)]. The amazing 
success of perturbation theory for the electromagnetic interactions of the 
electron also indicates that the physical electromagnetic coupling is below 
this unknown critical value. QCD, in contrast, is thought to exist in the 
confining phase with a fine structure constant as = g2/4"rr on the ~(1). 

In Dirac's theory of magnetic charge one allows the vector potential A 
to develop a singularity that runs from the location of the magnetic charge 
to spatial infinity, so that V.B = p,,, is consistent with the B = V x A 
(Dirac, 1931, 1948). Dirac also showed that in order for the wavefunction 
of an electrically charged particle in the presence of this string singularity 
to be single-valued, the following quantization condition had to hold: 

eg  n 

4"rr 2 
(1) 

where n is an integer, g is the magnitude of the magnetic charge, and e is 
the magnitude of the electric charge (which we will take to be the charge of 
the electron). There are other ways of formulating a theory of magnetic 
charge without having to take recourse to a singular vector potential [the 
fiber bundle approach of Wu and Yang (1975) or the two-potential approach 
of Cabbibo and Ferrari (1962)]. In all these various theories, however, one 
eventually ends up with a similar quantization condition. The best model- 
independent argument for this is due to Saha (Saha, 1936, 1949; Wilson, 
1949). If one considers a particle with electric charge e in the presence of a 
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particle with magnetic charge g, then due to the E x B term in the energy- 
momentum tensor this system carries a field angular momentum of magnitude 
eg141r. Since angular momentum is quantized in integer multiples of h/2,  we 
again arrive at condition (1), where we have set h = 1. 

If e in equation (1) is taken as the physical charge of the electron, it is 
found that the magnitude of the magnetic charge is enormous. The strength 
of the electric coupling strength between two electric charges is e2/4"rr ~- 1/ 
137, while the strength of the minimum magnetic coupling [i.e., n = 1 in 
equation (1)] between two monopoles is g214"tr -~ 137/4. The interaction 
strength between two monopoles is roughly 5 • 10 3 times stronger than that 
between two electric charges. The size of the magnetic coupling puts it well 
out of the range of perturbation theory, and opens up the logical possibility 
that unusual nonperturbative effects could occur in the presence of such a 
nonperturbative magnetic charge. In Wilson and Guth's argument for a phase 
transition in a U(1) gauge theory with a large coupling, the U(1) gauge charge 
is usually thought of as electric charge. If the U(I) gauge charge is taken to 
be electric charge, then there is a definite difference, in the standard formula- 
tion of the theory, in the way the gauge boson couples to electric charge as 
compared to how it couples to magnetic charge. The electric charge is mini- 
mally coupled to the vector potential A~, while the magnetic charge has no 
simple coupling A~. Physically, however, the gauge boson should couple to 
both charges in a symmetric way, especially when one looks at the theory 
in terms of how these charges interact with the E and B fields. This physically 
intuitive idea takes the mathematical form of a dual symmetry between 
electric and magnetic quantities. For the E and B fields, the dual symmetry 
is (Jackson, 1975) 

E ~ E c o s 0 + B s i n 0  

B ~ - E s i n 0 + B c o s 0  (2) 

For the electric and magnetic charge and current densities (J~ = (Pe, Je) and 
J~ = (Pro, Jm)) the dual symmetry is 

J~ ~ ~ cos 0 + J~ sin 0 

~ - ~  sin 0 + J~ cos 0 (3) 

Maxwell's equations with magnetic sources are invariant under the combined 
action of (2) and (3). This dual symmetry between electric and magnetic 
charges and currents shows that it is a matter of convention as to what is 
called electric charge and what is called magnetic charge. In fact Baker et al. 
(1995) have shown that electromagnetism can be reformulated with magnetic 
charge as the gauge charge, while electric charge is attached to Dirac-type 
strings. In this dual reformulation of electromagnetism it is the magnetic 
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charge which is minimally coupled to the U(1) gauge boson. Thus Wilson 
and Guth's conjecture about a phase transition for strongly coupled U(I) 
theory to a confining phase with a massive gauge boson should be applicable 
to this dual reformulation of electromagnetism where the magnetic charge is 
directly coupled to the photon. The only unresolved question is whether or 
not the large value of the magnetic coupling is greater than the unknown 
critical coupling necessary to cause this phase transition. 

Combining this dual symmetry with the conjecture of a strong-coupling 
phase transition to a confining phase with a massive gauge boson, it can be 
argued that a large, nonperturbative magnetic charge would make the photon 
massive. The dual symmetry is important since it indicates that it should not 
make a difference whether the large, nonperturbative charge is electric or 
magnetic. Since the photon is apparently massless to some stringent upper 
limit, this implies that Abelian magnetic charge is absent from the physical 
world. As we shall see, the Cabbibo-Ferrari formulation of magnetic charge 
could still give a consistent theory even in the presence of this dynamical 
mass generation. Even though there is no theoretical prediction as to the 
critical value of the coupling at which this phase transition should occur, the 
value at which QCD apparently undergoes this phase transition, while not 
exactly determined, is certainly thought to be much less than 137/4. A rough 
estimate of the critical coupling can be made by considering the free energy 
of Wilson loops for a U(I) gauge theory (Kogut, 1983). This gives a critical 
coupling of approximately g2 ~_ 1.57, which is smaller than the required 
strength of the magnetic charge from equation (1). This rough estimate of 
the critical coupling agrees with numerical work on compact lattice U(I) 
gauge theory, which points to a critical coupling of the order unity (DeGrand 
and Toussaint, 1980; Lautrup and Nauenberg, 1980). Assuming that as the 
limit of the lattice spacing is taken to zero the lattice theory goes over 
smoothly into the continuum theory, one again finds an indication that the 
required value of the magnetic coupling is in the confinement regime where 
the gauge boson is massive. 

The coexistence of confinement and massive gauge bosons (the Higgs 
mechanism) may seem strange, since massive gauge bosons usually imply a 
short-range effect. However, Fradkin and Shenker (1979) investigated the 
phase diagram for a U(I) theory with arbitrary coupling and found that 
the Higgs phase and the confinement phase do indeed coexist so long as the 
U(I) coupling is greater than its critical value. 

2. THE TECHNICOLOR ANALOGY 

In this section we will give an argument, based on an analogy to the 
technicolor idea, that also points to the possibility that in the presence of 
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magnetic charge the photon would develop a dynamical mass. The basic idea 
behind technicolor theories is to introduce a new set of fermions (i.e., techni- 
fermions) which couple to a new, strong, non-Abelian gauge force called 
technicolor. The techni-fermions form a condensate, (FF) ~ 0, which gives the 
theory a vacuum expectation value. The elementary Higgs scalar is replaced by 
the composite scalar FF, which must have the correct quantum numbers in 
order to mix with the gauge boson that is to become massive. Even without 
a technicolor interaction it is thought that QCD by itself gives the same 
dynamical mass generation via the mixing of the SU(2) gauge bosons with 
light quark-antiquark condensates. The problem with this is that the scale 
of the QCD interaction gives a mass to the gauge bosons which is several 
orders of magnitude too small. Thus one must introduce the QCD-like techni- 
color interactions which are postulated to have the right scale in order to 
give the SU(2) gauge bosons masses on the order of 80-90 GeV. In the 
present case instead of the composite scalar being composed of techni- 
fermions it is composed of a monopole-antimonopole pair. Denoting the 
monopole-antimonopole condensate by Hm, we can, in analogy with techni- 
color, introduce an effective coupling between the photon and this composite 
scalar particle 

~'y--m ~" fm (gA~)(0~iim) (4) 
2 

where fm is a constant, which is the equivalent of the pion decay constant of 
QCD. This interaction term in the Lagrangian mixes the photon with the 
composite IIm with a Feynman rule vertex of -(igfm/2)q~, where q~ is 
the momentum of the photon. Taking an infinite sum of IIm's mixing in with 
the photon changes the photon's propagator from 

_ i ( g ~  _ q~q jq2)  (5) 
Dv~ = q2 

to 

- i ( g ~  - qv.qJq 2) (6) 
D ~  = q2 _ g2f ~/4 

The pole in the second propagator indicates that the photon now has a mass 
of my = gfm/2. This mass is arbitrary since the "magnetic" pion decay constant 
fm is unspecified. Both the argument based on Wilson and Guth's idea of a 
phase transition for a strongly coupled theory and this more heuristic techni- 
color-inspired argument point to the photon developing a mass in the presence 
of a large magnetic charge. Both arguments have a degree of ambiguity. In 
the first case the critical value at which the phase transition occurs is not 
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determined theoretically; in the second case the mass given to the photon is 
arbitrary since it depends on the unknown "magnetic" pion decay constant 
fro. In either case one could still make the argument that the mass given 
to the photon by the nonperturbative magnetic charge is smaller than the 
experimental upper limit on the photon mass. Given the stringent upper bound 
on the photon mass, this argument is unnatural. The more likely statement 
is that the apparent masslessness of the photon implies the absence of mag- 
netic charge. 

3. DISCUSSION AND CONCLUSIONS 

Using two different approaches, we have argued that the required large, 
nonperturbative value of magnetic charge is inconsistent with the apparent 
masslessness of the photon. Or put in reverse: the apparent masslessness of the 
photon implies the absence of magnetic charge with the large, nonperturbative 
coupling which is required in Abelian monopole theories. This statement is 
too broad. The Cabbibo-Ferrari formulation of magnetic charge could still 
remain consistent with this dynamical mass generation for the photon i f  one 
interprets the second potential as a second gauge boson. In the Cabbibo- 
Ferrari approach a second pseudo four-vector potential C~ = (~m, C) is 
introduced in addition to the usual four-vector potential A~ = (~b e, A). Then 
in terms of these two potentials the normal definitions of the E and B fields 
get expanded to 

B / =  G O/+ ~oi (7) Ei = F ~ - ~ o i ,  

where the field strength tensors are 

F ~  = O~Ar - O~A~, 

and their duals are 

1 
9;~ = ~ %~o~F m, 

G ~  = OoC,, - c9,,C~. (8) 

1 
q3~v = ~ %v~G ~ (9) 

It is now possible to cast the dual relationship between the E and B fields 
of (2) in terms of the four-vector potentials, 

A~ ---> A~ cos 0 + C~ sin 0 

C~ ---> -A~ sin 0 + C~ cos 0 (10) 

making the theory dual at the level of the four-potentials. Even though there 
are two potentials in this approach, one normally imposes conditions on these 
two potentials so that in the end there are only enough degrees of freedom 
left to account for one photon (Zwanziger, 1971). In the Cabbibo-Ferrari 
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theory one also ends up with an enormous, nonperturbative value for the 
magnetic coupling due to Saha's angular momentum quantization argument. 
Thus, in the one-photon version of the Cabbibo-Ferrari formulation, the 
apparent observed masslessness of the photon again implies the absence of 
magnetic charge. If, however, the pseudo four-vector potential is taken to be 
a second, parity-odd photon, then a consistent theory can be given even in 
the presence of a large, nonperturbative magnetic coupling. One can arrange 
for the dynamical symmetry breaking to give a mass to the pseudo photon 
C~ while the second photon A N remains massless. This is in direct analogy 
with what happens in the SUL(2) x U(1) standard model, where the Z boson 
becomes massive while the photon remains massless. This happens whether 
the symmetry breaking is spontaneous or dynamical. Thus, taking C~ as a 
real gauge boson not only allows one to have a nonperturbative magnetic 
coupling, but also naturally explains the absence of this second pseudo photon 
from the particle spectrum that has so far been probed. Most work on the 
Cabbibo-Ferrari theory of magnetic charge takes the view of Zwanziger 
(1971) that there is only one photon. However, there is some work that does 
regard the potential C~ as being a second, physical photon (Hagen, 1965; 
Salam, 1966; Taylor, 1967; Singleton, 1995). 

Wilson and Guth argued that in a U(I) gauge theory there should be a 
critical value of the coupling such that the theory undergoes a phase transition 
to a confining theory where the U(I) gauge boson becomes massive. Combin- 
ing this idea with the required large, nonperturbative magnetic charge which 
occurs in all monopole theories, and the electric-magnetic duality (which 
implies that it should not matter whether the nonperturbative coupling is 
electric or magnetic), we contend that the photon acquires a dynamical mass 
in the presence of magnetic charge. From an experimental point of view one 
can point to the SU(3) theory of the strong interaction, which is thought to 
exist in the confining phase with a coupling constant that is considerably 
less than the coupling constant a magnetic monopole is required to have. The 
apparent experimental masslessness of the photon then implies the absence of 
Abelian magnetic monopoles of the Dirac or Wu-Yang type. A consistent 
monopole theory is still possible if one works with the Cabbibo-Ferrari 
theory and takes the somewhat unorthodox view that the second pseudo four- 
vector potential corresponds to a physical gauge boson. 

The arguments given here should be taken strictly as applying only to 
Abelian monopoles. Objects like the 't Hooft-Polyakov monopole ('t Hooft, 
1974; Polyakov, 1974), while also having an enormous magnetic charge, are 
of a somewhat different character than the Dirac or Wu-Yang monopoles. 
These magnetically charged objects come from an embedding of a U(I) 
symmetry within a larger non-Abelian gauge group. Additionally, the mag- 
netic charge of the theory is connected with the unusual topological structure 
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of the Higgs field. Both of these facts make it difficult to formulate an 
electric-magnetic dual symmetry for the 't Hooft-Polyakov theory. Since 
this dual symmetry was crucial to our argument, we cannot use the arguments 
presented here to place any restrictions on the existence of 't Hooft-Polyakov 
magnetic charges. 
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